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CHAPTER 1

A BRIEF INTRODUCTION

The cantilevered pipe conveying fluid is one of the general class of slender structures (slender implies that
the laterial dimension of the structure is much smaller than the longitudinal one) with axial flows. Com-
monly found examples include fire-hose and garden-hose. A schematic of the cantilevered pipe conveying
fluid is shown in fig 1.1.

Despite being of limited application in the field of engineering, the cantilevered pipe conveying fluid
problem is now considered to be a model problem in the study of dynamics and stability of structures
owing to the following reasons [1]

� it is a simple system and can be modelled by simple equations, all the while possessing rich dynamics

� it possesses a fairly ease of construction which makes it possible to carry out theoretical and experi-
mental investigation simultaneously

� it finds itself amongst a broader class of dynamical systems involving momentum transport of that
of axially moving continua (fluid, to be precise)

In this term paper, we are going to evaluate this problem with regard to the influence of various system
parameters on linear stability of the problem with sole focus on the occurrence of flutter as the velocity of
axial flow through the cantilevered pipe changes.

The term paper is organized in the following manner. We shall apply Hamilton’s principle to obtain
the equation of motion for the cantilevered pipe system in chapter 2 before moving to the derivation of
linear equation of motion in chapter 3. Then, the results obtained for the linear analysis are presented in
chapter 4 and finally a conclusion in chapter 5.

Figure 1.1: Schematic of a cantilevered pipe conveying fluid
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CHAPTER 2

HAMILTON’S PRINCIPLE FOR EQUATION OF MOTION FOR A

CANTILEVERED PIPE CONVEYING FLUID

2.1 Assumptions

The fundamental assumptions made for the cantilevered pipe and the fluid are

(a) the fluid is incompressible

(b) the velocity profile of the fluid is uniform

(c) the diameter of the pipe is small compared to its length, such that the pipe behaves like an Euler-
Bernoulli beam

(d) the motion is planar (2D)

(e) the deflections of the pipe are small

(f) rotatory inertia and shear inertia and shear deformation are neglected

(g) the pipe centerline is inextensible

2.2 Geometric details

Consider the slender cantilevered pipe in its initial undeformed state with its centerline along X axis (see
fig 1.1). We use two coordinate systems to define the system

� Eulerian: (x, z)

� Lagrangian: (x0, z0)

For the planar motions in (x, z) plane, the displacements are defined as u = x− x0 and w = z − z0 = z.

Inextensibility condition : Let us consider two points P and Q of the deflected pipe, originally Po
and Qo. We have

(δs)2 = (δx)2 + (δz)2, (δs0)
2 = (δx0)

2 + (δz0)
2 = (δx0)

2

Subtracting the second expression from the first,

(δs)2 − (δs0)
2 = (δx)2 + (δz)2 − (δx0)

2
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Figure 2.1: (a) Eulerian (x, z) and Lagrangian (x0, z0) coordinate systems and the coordinate s when the
centerline is taken to be inextensible, (b) for derivation of inextensibility condition, (c) diagram defining
terms for the statement of Hamilton’s principle

=

[(
∂x

∂x0

)2

+

(
∂z

∂x0

)2

− 1

]
(δx0)

2

As δs = δs0 ≡ δx0, we have the inextensibility condition as(
∂x

∂x0

)2

+

(
∂z

∂x0

)2

= 1

or,

(
1 +

∂u

∂x0

)2

+

(
∂w

∂x0

)2

= 1 (2.1)

In order to make approximations for some expressions later on, we assume that the lateral displacement
w is small compared to the pipe length L, that is,

w

L
∼ O(ε), ε << 1

Using inextensibility condition, binomial approximation and replacing x0 by s, we can deduce

u ' −
∫ s

0

1

2

(
∂w

∂s

)2

ds,
u

L
∼ O(ε2)

2.3 Hamiltonian derivation

We begin with the principle of virtual work for a system of N particles with individual mass mi subjected
to a force F i. From d’Alembert’s principle

N∑
i=1

(mir̈i − F i) · δri = 0 (2.2)

with ri being the position vector of each particle and δri the associated virtual displacement satisfying
the system constraints (boundary conditions).

Now, consider the second term of equation 2.2

N∑
i=1

F i · δri = δWnc + δWc
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where δWnc is the virtual work due to non-conservative forces while δWc is that due to conservative forces.
Taking δWnc = δW and δWc = −δV (V is the potential energy), we have

N∑
i=1

F i · δri = δW − δV

Going back to the first term on eqn 2.2,

N∑
i=1

mir̈i · δri =
N∑
i=1

mi
d(ṙi · δri)

dt
−

N∑
i=1

1

2
miδ(ṙi · ṙi) (2.3)

=
N∑
i=1

mi
d(ṙi · δri)

dt
− δ

N∑
i=1

1

2
mi(ṙi · ṙi)︸ ︷︷ ︸
T

(2.4)

=
N∑
i=1

mi
d(ṙi · δri)

dt
− δT (2.5)

with T being the kinetic energy of the system
Substituting the expressions for the corresponding terms in eqn 2.2 gives

N∑
i=1

mi
d(ṙi · δri)

dt
− δT − (δW − δV ) = 0

=⇒ δ(T − V ) + δW −
N∑
i=1

mi
d(ṙi · δri)

dt
= 0

Let us have the Lagrangian function, L = T − V , such that the above equation becomes

δL+ δW −
N∑
i=1

mi
d(ṙi · δri)

dt
= 0

=⇒ δL+ δW − d

dt

N∑
i=1

(
miṙi · δri

)
= 0 (2.6)

Let us extend this idea to a continuous, closed system associated with a control volume Vc(t) bounded by
a surface Sc(t), composed of particles of density ρ, each with position vector r and velocity u. Applying
the principle of virtual work, eqn 2.6

δLc + δW − D

Dt

∫
Vc(t)

ρ(u · δr)dV = 0 (2.7)

where Lc = Tc − Vc is the Lagrangian function of the closed system, δW is the virtual work due to
generalized forces and D

Dt
is the material derivative along a particle; hence, u = Dr

Dt
.

Hamilton’s principle can be obtained by integrating the equation 2.7 between two instants, t1 and t2.∫ t2

t1

[
δLc + δW − D

Dt

∫
Vc(t)

ρ(u · δr)dV
]
dt = 0∫ t2

t1

δLcdt+

∫ t2

t1

δW dt−
∫ t2

t1

D

Dt

∫
Vc(t)

ρ(u · δr)dV dt = 0

Noting that r is prescribed at t1 and t2, that is δr = 0 resulting in∫ t2

t1

δLcdt+

∫ t2

t1

δW dt = 0

5



δ

∫ t2

t1

Lcdt+ δ

∫ t2

t1

W dt = 0

Extending it to an open system is done by considering a portion So(t) of the surface of the control
volume Vo(t) to have a velocity V · n normal to the surface (n is the surface normal), across which mass
may be transported. Portion Sc(t) corresponds to the closed part. Fig 2.2 shows the system at time t and
time t+ dt. On the closed portion Sc(t), V · n = u · n.

Should, at time t, Vo(t), coincides with Vc(t) as shown in fig 2.2 (a), then Reynolds’ general transport
theorem states that the total rate of change in { } is equal to the rate of change in the volume and that
due to influx/efflux through the boundaries, that is

d

dt

∫
Vo(t)
{ }dV =

D

Dt

∫
Vc(t)
{ }dV +

∫
So
{ }(V − u) · ndS (2.8)

where

D

Dt

∫
Vc(t)
{ }dV =

D

Dt

∫
Vo(t)
{ }dV

Figure 2.2: Control volume of the open system under consideration, Vo, and a fictitious closed system Vc,
coincident with Vo at time t. Control surfaces So and Sc are associated with the open and closed parts of
the open system. (a) System at time t, (b) at time t+ dt

Subtituting 2.8 and the above relation into 2.7 gives

δLo + δW +

∫
So
ρ(u · δr)(V − u) · ndS − d

dt

∫
Vo(t)

ρ(u · δr)dV = 0

where Lo is the Lagrangian of the open system.
Upon integrating with respect to time from t1 to t2 and using δr = 0 at the integration limits, we

obtain the Hamilton’s principle for the open system

δ

∫ t2

t1

Lo dt+ δ

∫ t2

t1

W dt+

∫ t2

t1

[∫
So
ρ(u · δr)(V − u) · ndS

]
dt−

∫ t2

t1

[
d

dt

∫
Vo(t)

ρ(u · δr)dV
]
dt = 0

=⇒ δ

∫ t2

t1

Lo dt+

∫ t2

t1

[
δW +

∫
So
ρ(u · δr)(V − u) · ndS

]
︸ ︷︷ ︸

δH

dt = 0
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=⇒ δ

∫ t2

t1

Lo dt+ δ

∫ t2

t1

Hdt = 0

(2.9)

Let us now apply the above equation to a cantilevered pipe conveying a fluid. For the sake of simplicity,
we consider the case of no dissipation and a constant flow velocity U . Also it is assumed that the only
force involved in δW is due to the pressure p, measured above the ambient of the surrounding medium, (p
is gauge pressure) and hence

δW = −
∫
Sc(t)+Si+Se(t)

p(δr · n)dS

δH = −
∫
Sc(t)+Si+Se(t)

p(δr · n)dS +

∫
Si+Se(t)

ρ(u · δr)(V − u) · ndS

where Sc(t) is the surface covered by the pipe wall, and Si (note that Si is not dependent on t) and Se(t)
are the inlet and exit open surfaces for the fluid.

It is presumed that any virtual displacement of the pipe does not induce a virtual displacement of the
fluid relative to the pipe. And so, virtual displacements of the fluid relative to the pipe are independent
of those of the pipe. As the fluid is incompressible too, there can be no virtual change in the volume of
the system and so, the integral over Sc(t) can be dropped and the above relation becomes

δH = −
∫
Si+Se(t)

p(δr · n)dS +

∫
Si+Se(t)

ρ(u · δr)(V − u) · ndS

If the fluid entrance conditions are prescribed and are constant, then the integrals over Si are zero. Also,
since p = 0 at the outlet, the first term vanishes for the above equation

δH =

∫
Se(t)

ρ(u · δr)(V − u) · ndS

It would be shown in chapter 3 that u = ṙ + Uτ where r = xi + zk, τ = ∂x
∂s
i + ∂z

∂s
k and (̇) indicates

differentiation with respect to t. Also, using (u− V ) · n = U at Se(t) and M = ρA (A being the area of
the outlet), we have

δH = −MU(ṙL + UτL) · δrL

Substituting the above relation in eqn 2.9, we have

δ

∫ t2

t1

Lo dt−
∫ t2

t1

MU(ṙL + UτL) · δrLdt = 0 (2.10)

where rL and τL are the position vector and the tangential unit vector at the end of the pipe as seen in
fig 2.1 (c).
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CHAPTER 3

LINEAR GOVERNING EQUATION FOR SMALL TRANSVERSE

DISPLACEMENT

3.1 Derivation of the equation of motion

From eqn 2.10, we have the following

δ

∫ t2

t1

Lo dt−
∫ t2

t1

MU(ṙL + UτL) · δrLdt = 0

Let us redefine the Lagrangian of the system, L (drop the subscript o) in eqn 2.10 as

L = T − V (3.1)

where T is the total kinetic energy and V is the total potential energy of the system.

Certain useful relationships

Before we start building expressions for the different terms of eqn 3.1, we derive the following useful
relationships

� u = x− xo =⇒ u = x− s (as xo = s). Upon differentiating with respect to t, we have

ẋ = u̇

� From inextensibility condition (eqn 2.1), we have(
∂x

∂s

)2

+

(
∂z

∂s

)2

= 1

=⇒ ∂x

∂s
=

√
1−

(
∂w

∂s

)2

(as z = w)

≈ 1− 1

2

(
∂w

∂s

)2 (
considering

w

L
∼ O(ε)

)
= 1− 1

2
w′2

=⇒ ∂u

∂s
+

∂s

∂s︸︷︷︸
1

= 1− 1

2
w′2

8



=⇒ ∂u

∂s
= −1

2
w′2

Upon integrating with respect to s and using the boundary condition u(s = 0) = 0

u(s) = −1

2

∫ s

0

w′2 ds

� ṙL = ẋLi+ żLk = u̇Li+ ẇLk

� τL = x′Li+ z′Lk ≈
(

1− 1
2

∫ L
0
w′2 ds

)
i+ w′Lk, where prime (′) indicates differentiation with respect

to s.

� δrL = δuLi+ δwLk

Using the relationships derived above in the second term of eqn 3.1∫ t2

t1

MU(ṙL + UτL) · δrLdt

=

∫ t2

t1

MU

[
u̇Li+ ẇLk + U

(
1− 1

2

∫ L

0

w′2 ds

)
i+ Uw′Lk

]
· (δuLi+ δwLk) dt

=

∫ t2

t1

MU

[(
u̇L + U

(
1− 1

2

∫ L

0

w′2 ds

))
δuL + (ẇL + Uw′L) δwL

]
dt

=

∫ t2

t1

MU

 u̇LδuL︸ ︷︷ ︸
neglecting

+U

(
1− 1

2

∫ L

0

w′2 ds

)
︸ ︷︷ ︸

≈ U

δuL + (ẇL + Uw′L) δwL

 dt

≈
∫ t2

t1

[
MU2δuL +MU (ẇL + Uw′L) δwL

]
dt

Substituting this in eqn 3.1 and rearranging, we get

δ

∫ t2

t1

L dt−
∫ t2

t1

[
MU2δuL +MU (ẇL + Uw′L) δwL

]
dt = 0

=⇒ δ

∫ t2

t1

(L −MU2uL) dt−
∫ t2

t1

MU (ẇL + Uw′L) δwL dt = 0 (3.2)

3.1.1 Kinetic energy of the system

The total kinetic energy of the system is

T = Tp + Tf (3.3)

where Tp and Tf are the kinetic energies associated with the pipe and the enclosed fluid.
Let us consider a small segment of pipe and fluid (see fig 2.1). By definition, velocity of the pipe

element is

V p =
∂r

∂t
= ẋi+ żk

Velocity of the fluid element is

V f = V p + Uτ

9



where τ is the tangential unit vector, τ = x′i+ z′k. And so,

V f = ẋi+ żk + U (x′i+ z′k) = (ẋ+ Ux′)i+ (ż + Uz′)k)

Kinetic energy of the pipe,

Tp =
1

2
m

∫ L

0

V p · V p ds =
1

2
m

∫ L

0

(ẋ2 + ż2)ds

where m is the linear mass density of the pipe
Kinetic energy of the fluid,

Tf =
1

2
M

∫ L

0

V f · V f ds

=
1

2
M

∫ L

0

[
(ẋ+ Ux′)2 + (ż + Uz′)2

]
ds

=
1

2
M

∫ L

0

(
ẋ2 + 2Uẋx′ + U2x′2 + ż2 + 2Użz′ + U2z′2

)
ds

=
1

2
M

∫ L

0

ẋ2 + 2Uẋx′ + U2 (x′2 + z′2)︸ ︷︷ ︸
=1 using 2.1

ż2 + 2Użz′

 ds

where M is the linear mass density of the fluid.
Let us make some approximations

ẋ ∼ O(ε2)

x′ ≈ 1− 1

2
w′2 ≈ 1

Also as ẋ = u̇ and z = w,

Tp =
1

2
m

∫ L

0

ẇ2 ds, Tf =
1

2
M

∫ L

0

(
U2 + ẇ2 + 2Uẇw′ + 2Uẇw′ + 2Uu̇

)
ds

therefore,

T =
1

2
m

∫ L

0

ẇ2 ds+
1

2
M

∫ L

0

(
U2 + ẇ2 + 2Uẇw′ + 2Uẇw′ + 2Uu̇

)
ds (3.4)

3.1.2 Potential energy of the system

The total potential energy of the system comprises of gravitational energy and strain energy stored in the
pipe, and the gravitational energy stored in the fluid, that is

V = Vp + Vf

In general, gravitational energy of a mass of density ρ immersed in a uniform gravitational field of strength
g is given by G = −

∫
V ρg · ξdV , where ξ is the position vector of a mass element with respect to some

origin.
Potential energy of the pipe is

Vp =
1

2
EI

∫ L

0

w′′2ds−mg
∫ L

0

u ds

10



where E is the Young’s modulus and I is the area moment of inertia.
Substituting u(s) = −1

2

∫ s
0
w′2 ds in the above

Vp =
1

2
EI

∫ L

0

w′′2ds+
1

2
mg

∫ L

0

(∫ s

0

w′2 ds

)
ds

Similarly, the potential energy of the fluid is

Vf =
1

2
Mg

∫ L

0

(∫ s

0

w′2 ds

)
ds

Now,

V =
1

2
EI

∫ L

0

w′′2 ds+
1

2
(m+M)g

∫ L

0

(∫ s

0

w′2 ds

)
ds

Let us simplify the second term using integration by parts

1

2
(m+M)g

∫ L

0

1 ·
(∫ s

0

w′2 ds

)
ds =

1

2
(m+M)g

[
s

∫ s

0

w′2 ds

∣∣∣∣L
0

−
∫ L

0

sw′2 ds

]

=
1

2
(m+M)g

[
L

∫ L

0

w′2 ds−
∫ L

0

sw′2 ds

]
=

1

2
(m+M)g

∫ L

0

(L− s)w′2 ds

The total potential energy of the system is

V =
1

2
EI

∫ L

0

w′′2ds+
1

2
(m+M)g

∫ L

0

(L− s)w′2 ds (3.5)

3.1.3 Expanding variational terms

Expanding the term δ
∫ t2
t1

(L −MU2δuL) dt of eqn 3.2, we have

δ

∫ t2

t1

(L −MU2δuL) dt = δ

∫ t2

t1

(T − V −MU2δuL) dt

= δ

∫ t2

t1

T dt− δ
∫ t2

t1

V dt− δ
∫ t2

t1

MU2δuL dt

Using eqn 3.4, we have

δ

∫ t2

t1

T dt =

∫ t2

t1

[
m

∫ L

0

ẇδẇ ds+M

∫ L

0

(ẇδẇ + Uẇδw′ + Uw′δẇ + Uδu̇) ds

]
dt

=

∫ L

0

(m+M)

(∫ t2

t1

ẇδẇ dt

)
ds+

∫ t2

t1

MU

(∫ L

0

ẇδw′ ds

)
dt

+

∫ L

0

MU

(∫ t2

t1

w′δẇ dt

)
ds+

∫ L

0

MU

(∫ t2

t1

δu̇ dt

)
ds

=

∫ L

0

(m+M)

(
ẇδw

∣∣∣∣t2
t1

−
∫ t2

t1

ẅδw dt

)
ds+

∫ t2

t1

MU

(
ẇδw

∣∣∣∣L
0

−
∫ L

0

ẇ′δw ds

)
dt

+

∫ L

0

MU

(
w′δw

∣∣∣∣t2
t1

−
∫ t2

t1

ẇ′δw dt

)
ds+

∫ L

0

MU

(
δu

∣∣∣∣t2
t1

)
ds
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From the Hamilton’s principle that the variations at t = t1 and t = t2 are zero, we have δw|t1 = δwt2 =
δu|t1 = δu|t2 = 0. Using BCs, we have δw|s=0 = 0 (clamped at s = 0). So,

δ

∫ t2

t1

T dt = −
∫ L

0

∫ t2

t1

(m+M)ẅδw dt ds−
∫ t2

t1

∫ L

0

2MUẇ′δw ds dt+

∫ t2

t1

MUẇLδwL dt (3.6)

Using equation 3.5, we have

δ

∫ t2

t1

V dt = δ

∫ t2

t1

[
1

2
EI

∫ L

0

w′′2ds+
1

2
(m+M)g

∫ L

0

(L− s)w′2 ds
]
dt

=

∫ t2

t1

[
EI

∫ L

0

w′′δw′′ds+ (m+M)g

∫ L

0

(L− s)w′δw′ ds
]
dt

=

∫ t2

t1

EI

[
w′′δw′

∣∣∣∣L
0

−
∫ L

0

w′′′δw′ds

]
dt

+

∫ t2

t1

(m+M)g

[
(L− s)w′δw

∣∣∣∣L
0

−
∫ L

0

((L− s)w′)′δw ds

]
dt

=

∫ t2

t1

EI

[
w′′δw′

∣∣∣∣L
0

− w′′′δw
∣∣∣∣L
0

+

∫ L

0

w′′′′δwds

]
dt

+

∫ t2

t1

(m+M)g

[
(L− s)w′δw

∣∣∣∣L
0

−
∫ L

0

((L− s)w′)′δw ds

]
dt

Using the following BCs

w(s = 0) = w′(s = 0) = 0; w′′(s = L) = w′′′(s = L) = 0

We now have

δ

∫ t2

t1

V dt =

∫ t2

t1

∫ L

0

EIw′′′′δwds dt−
∫ t2

t1

∫ L

0

(m+M)g((L− s)w′)′δw ds dt (3.7)

Expanding the second term in the first integral on the left of eqn 3.2 using the certain useful relations, we
have

δ

∫ t2

t1

MU2uL dt = δ

∫ t2

t1

MU2

(
−1

2

∫ L

0

w′2 ds

)
dt

= −
∫ t2

t1

MU2

(∫ L

0

w′δw′ ds

)
dt

= −
∫ t2

t1

MU2

(
w′δw

∣∣∣∣L
0

−
∫ L

0

w′′δw ds

)
dt

Using the BC w(s = 0) = 0, we get

δ

∫ t2

t1

MU2uL dt = −
∫ t2

t1

MU2w′LδwL dt+

∫ t2

t1

MU2

∫ L

0

w′′δw ds dt (3.8)

Substituting the expressions 3.6, 3.7 and 3.8 in eqn 3.2, we have

−
∫ L

0

∫ t2

t1

(m+M)ẅδw dt ds−
∫ t2

t1

∫ L

0

2MUẇ′δw ds dt+
����������
∫ t2

t1

MUẇLδwL dt
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−
∫ t2

t1

∫ L

0

EIw′′′′δwds dt+

∫ t2

t1

∫ L

0

(m+M)g((L− s)w′)′δw ds dt+
����������∫ t2

t1

MU2w′LδwL dt

−
∫ t2

t1

MU2

∫ L

0

w′′δw ds dt−
���������������∫ t2

t1

MU (ẇL + Uw′L) δwL dt = 0

Thus,

−
∫ t2

t1

∫ L

0

[
(m + M)ẅδw + 2MUẇ′ + EIw′′′′ − (m + M)g((L − s)w′)′ + MU2w′′

]
δw ds dt = 0

3.1.4 Equation of motion

For arbitrary variations in δw and using s ≈ x, we obtain the equation of motion for the cantilevered pipe
conveying fluid

(m+M)ẅ + 2MUẇ′ + EIw′′′′ − (m+M)g ((L− x)w′)
′
+MU2w′′ = 0

=⇒ (m+M)ẅ + 2MUẇ′ + EIw′′′′ + (MU2 − (m+M)g(L− x))w′′ + (m+M)gw′ = 0 (3.9)

3.1.5 Incorporation of dissipative effects

In order to complete the equations, we must also incorporate dissipative effects into the system [3]. Let
us assume that the pipe material is viscoelastic and of the Kelvin-Voigt type (strain-rate damping). For
this, the strain energy expression is modified as

E → E

(
1 + a

∂

∂t

)
(3.10)

where a is the coefficient of Kelvin-Voigt damping in the material. Hence, in eqn 3.5, EI is replaced by

EI

(
1 + a ∂

∂t

)
.

Also, suppose the pipe undergoes damping due to external medium in which it is carrying out its
motion, then we have an additional term in the equation

c
∂w

∂t
or cẇ

which is the external dissipation term and c is the damping constant.

The governing equation of the cantilevered pipe with both external and internal damping is [2]

(m+M)ẅ + 2MUẇ′ + cẇ + aEIẇ′′′′ + EIw′′′′ + (MU2 − (m+M)g(L− x))w′′

+ (m+M)gw′ = 0 (3.11)

3.2 Non-dimensional equation of motion

Let us now non-dimensionalize the equation 3.11. Denoting the dimensions of mass, length and time by
M,L and T respectively, we construct the following time-scale

L2

√
m+M

EI
≡ L2

√
ML−1

ML−1T −2L4
≡ T

We also have the following non-dimensional variables

13



� τ = t

L2
√

m+M
EI

≡ T
T

� ξ = x
L
≡ L
L

� η = w
L
≡ L
L

Now,

t = τL2

√
m+M

EI
, x = ξL, w = ηL

Substituting the above expressions in the eqn 3.11, we have

(m+M)
∂2(ηL)

∂
(
τL2

√
m+M
EI

)2 + 2MU
∂2(ηL)

∂
(
τL2

√
m+M
EI

)
∂(ξL)

+ c
∂(ηL)

∂
(
τL2

√
m+M
EI

) + aEI
∂5(ηL)

∂
(
τL2

√
m+M
EI

)∂(ξL)4

+EI
∂4(ηL)

∂(ξL)4
+ (MU2 − (m+M)g(L− ξL))

∂2(ηL)

∂(ξL)2
+ (m+M)g

∂(ηL)

∂(ξL)
= 0

=⇒ EI

L3
η̈ +

2MU

L2

√
m+M
EI

η̇′ +
c

L
√

m+M
EI

η̇ +
aEI

L5

√
EI

m+M
η̇′′′′ +

EI

L3
η′′′′ +

(
MU2

L
− (m+M)g(1− ξ)

)
η′′

+(m+M)gη′ = 0

where dot (̇) amd prime (’) indicates differentiation with respect to τ and ξ respectively.
Multiplying throughout by L3

EI
, we have

η̈ +
2MU

L2

√
EI

m+M

L3

EI
η̇′ +

c

L

√
EI

m+M

L3

EI
η̇ +

a

L2

√
EI

m+M
η̇′′′′ + η′′′′

+

(
MU2

L
− (m+M)g(1− ξ)

)
L3

EI
η′′ +

(m+M)gL3

EI
η′ = 0

=⇒ η̈ + 2

√
M

m+M

(√
M

EI
UL

)
η̇′ +

(
cL2√

EI(m+M)

)
η̇ +

(
a

L2

√
EI

m+M

)
η̇′′′′ + η′′′′

+

(√M

EI
UL

)2

+

(
(m+M)gL3

EI

)
(ξ − 1)

 η′′ + ((m+M)gL3

EI

)
η′ = 0

We have the following non-dimensional system parameters

� β = M
m+M

≡ ML−1

ML−1

� U =

(
M
EI

)1/2

UL ≡
( ML−1

ML−1T −2L4
)1/2LT −1L

� σ = cL2√
EI(m+M)

≡ ML−1T −1L2√
ML−1T −2L4ML−1

� α =

(
EI

m+M

)1/2
a
L2 ≡

(
ML−1T −2L4
ML−1

)1/2
T
L2

� γ = m+M
EI

L3g ≡ ML−1

ML−1T −2L4L
3LT −2
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Thus, we have the following non-dimensionalized governing equation

η̈ + 2
√
βU η̇′ + ση̇ + αη̇′′′′ + η′′′′ +

[
U2 − γ(1− ξ)

]
η′′ + γη′ = 0 (3.12)

3.3 Transformation into modal equation form

Let us use Galerkin’s method to approximate the solution for eqn 3.12 [2]. We introduce a solution of the
form

η(ξ, τ) =
N∑
j=1

qj(τ)φj(ξ) (3.13)

where φj(ξ) is the jth modal shape function for the cantilever beam and qj(τ) is its corresponding modal
coordinate and N is the number of modes considered for approximating the solution.

Substituting the above expression in eqn 3.12, multiplying by φi(ξ) and integrating from ξ = 0 to ξ = 1
on both sides (also invoking Einstein summation notation)

∫ 1

0

φj q̈jφidξ + 2
√
βU
∫ 1

0

φ′j q̇jφidξ + σ

∫ 1

0

φj q̇jφidξ + α

∫ 1

0

φ′′′′j q̇jφidξ +

∫ 1

0

φ′′′′j qjφidξ

+
[
U2 + γ(ξ − 1)

] ∫ 1

0

φ′′j qjφidξ + γ

∫ 1

0

φ′jqjφidξ = 0 i, j = 1, 2, . . . , N

=⇒
(∫ 1

0

φiφjdξ

)
q̈j+2

√
βU
(∫ 1

0

φiφ
′
jdξ

)
q̇j+σ

(∫ 1

0

φiφjdξ

)
q̇j+α

(∫ 1

0

φiφ
′′′′
j dξ

)
q̇j+

(∫ 1

0

φiφ
′′′′
j dξ

)
qj

+
[
U2 + γ(ξ − 1)

](∫ 1

0

φiφ
′′
jdξ

)
qj + γ

(∫ 1

0

φiφ
′
jdξ

)
qj = 0 i, j = 1, 2, . . . , N

Using the orthonormal property of the modal shapes, that is,
∫ 1

0
φiφjdξ = δij (δij is the Kronecker delta

function), and
∫ 1

0
φiφ

′′′′
j dξ = λ4jδij where λj is the jth eigenfrequency

δij q̈j +

[
2
√
βU
∫ 1

0

φiφ
′
jdξ + σδij + αλ4jδij

]
q̇j +

[
λ4jδij

+ U2 + γ(ξ − 1)

∫ 1

0

φiφ
′′
jdξ + γ

∫ 1

0

φiφ
′
jdξ

]
qj = 0 i, j = 1, 2, . . . , N

Upon rearranging, we get

δij q̈j +

2
√
βU
∫ 1

0

φiφ
′
jdξ︸ ︷︷ ︸

bij

+(σ + αλ4j)δij

 q̇j +

[
λ4jδij + (U2 − γ)

∫ 1

0

φiφ
′′
jdξ︸ ︷︷ ︸

cij

+ γ

∫ 1

0

ξφiφ
′′
jdξ︸ ︷︷ ︸

dij

+γ

∫ 1

0

φiφ
′
jdξ︸ ︷︷ ︸

bij

]
qj = 0 i, j = 1, 2, . . . , N

where

bij =

∫ 1

0

φiφ
′
jdξ cij =

∫ 1

0

φiφ
′′
jdξ dij =

∫ 1

0

ξφiφ
′′
jdξ
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Now,

δij︸︷︷︸
Mij

q̈j+
[
2
√
βUbij + (σ + αλ4j)δij

]
︸ ︷︷ ︸

Cij

q̇j+

[
λ4jδij + (U2 − γ)cij + γdij + γbij

]
︸ ︷︷ ︸

Kij

qj = 0 i, j = 1, 2, . . . , N

(3.14)

where Mij, Cij and Kij are the components of mass (M ), damping (C) and stiffness (K) matrices
respectively. It is to be noted that M = I (an identity matrix).

=⇒ Mij q̈j + Cij q̇j +Kijqj = 0 i, j = 1, 2, . . . , N

In matrix form, we have

Iq̈ +Cq̇ +Kq = 0 (3.15)

Taking z = q̇, the matrix equation can be expressed in terms of two vector equations

q̇ = z

ż = −Kq −Cz
which can also be represented as [

q̇
ż

]
︸︷︷︸

ẋ

=

[
0 I
−K −C

]
︸ ︷︷ ︸

A

[
q
z

]
︸︷︷︸

x

Thus we have the following state space equation

ẋ = Ax (3.16)

Introducing a solution of the form x(τ) = x0e
iωτ , where ω is complex frequency, that is, ω = <(ω)+i =(ω)

iωx0e
iωτ = Ax0e

iωτ

=⇒ (iωI −A)x0 = 0

For non-trivial solution x0 6= 0, we must have

det(iωI −A) = 0

which would give us the eigenvalues ω. The real part (<(ω)) of ω is the oscillation frequency of the
cantilevered pipe system while the imaginary part (=(ω)) is an indicator of growth or decay of the amplitude
of the oscillation. If =(ω) > 0, the corresponding modal oscillation decays (system is stable) while =(ω) < 0
indicates that the corresponding modal oscillation amplifies (system becomes unstable). The system is said
to undergo flutter when =(ω) becomes zero; the corresponding fluid velocity for the given set of parameters
β, γ, α and σ is called flutter flow velocity Uf . Physically, flutter is a self-excited oscillation wherein a
system develops a steady oscillatory motion of finite amplitude and constant frequency. Mathematically,
it is defined as a Hopf bifurcation [3].

3.3.1 Determining system response

In order to determine the system response, two initial conditions (ICs) are required: for displacement
η(ξ, 0) = η0(ξ) and for velocity η̇ (ξ, 0) = η̇0(ξ). The modal coordinates for displacement q and velocity q̇
are obtained by projecting the given ICs on the Galerkin modes and using the orthonormality property of
the modal shape functions [4]

qj =

∫ 1

0

η0(ξ)φj(ξ) dξ j = 1, 2, . . . , N

q̇j =

∫ 1

0

η̇0(ξ)φj(ξ) dξ
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CHAPTER 4

RESULTS: LINEAR ANALYSIS OF THE CANTILEVERED PIPE

CONVEYING FLUID

The linear analysis for the cantilevered pipe conveying fluid system has been performed taking N = 10
Galerkin modes to get as accurate an approximation of the system as possible. Let us study the effect of
the various parameters β, γ, α and σ on the system’s stability and also flutter flow velocity Uf .

4.1 Effect of mass ratio β

Let us consider a horizontal system with all dissipation effects neglected, such that the system parameters
α = γ = σ = 0, and it depends only on β. The variation of complex frequency ω with flow velocity U for
different mass ratios are presented in the figures 4.1, 4.2 and 4.3. We make the following observations

� For small U , all the coupled modes experience damping, that is, =(ω) > 0 for every mass ratio
β = 0.2, 0.295, 0.5 presented here. At higher U , =(ω) of at least one mode begins to decrease and
eventually crosses zero to the negative side and so, the system becomes unstable due to flutter. This
mechanism of the solution of the system changing its nature is called Hopf bifurcation.

� For β = 0.2, =(ω) of the second and fourth modes becomes negative as U crosses ∼ 5.58 and
∼ 13.2663 respectively. For β = 0.295, =(ω) of the second mode becomes negative as U crosses
∼ 7.24. For β = 0.5, =(ω) of the third mode becomes negative as U crosses ∼ 9.27. One thing
to note about β = 0.295 is that the second mode crosses over to the positive imaginary region
for 7.24 < U < 8 and then re-enters the negative imaginary region. In this process, the system
becomes unstable, regains its stability and loses it again; the system dynamics forming the so-called
‘instability-restabilization-instability’ sequence [3].

� Mode exchange: It is to be noted that the second coupled modes for β = 0.2, 0.295 bend downwards
into the negative imaginary axis while the third mode is continuously marching along the positive
imaginary axis. However, an opposite facet is observed for β = 0.5 where its second mode lies in
the positive imaginary region while its third mode moves into the negative imaginary axis. This
phenomenon of two modes exchanging their nature is called “mode exchange” [5] [3].

� The details regarding the primary coupled flutter mode number for a particular value of mass ratio
β and its corresponding flutter flow velocity Uf are tabulated in table 4.1. The primary flutter mode
is the second one for 0 < β < 0.4, the third one for 0.4 ≤ β < 0.55, the second one for 0.55 ≤ β ≤ 0.6
and eventually the first mode for 0.6 < β < 1.
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Table 4.1: Primary flutter coupled mode and flutter flow velocity for various mass ratios
Mass ratio Primary flutter Flutter flow velocity

β coupled mode Uf
0.1 Second 4.7487
0.2 Second 5.5779

0.295 Second 7.2362
0.3 Second 8.2161
0.35 Second 8.5176
0.4 Third 8.7437
0.5 Third 9.2714
0.55 Second 9.6321
0.6 Second 9.9497
0.65 First 10.3846
0.7 First 12.7387
0.8 First 13.4925
0.9 First 14.3216

Figure 4.1: Variation of complex frequency ω with non-dimensional flow velocity U for β = 0.2; the flow
velocity where a mode undergoes flutter (Uf ) is marked.
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Figure 4.2: Variation of complex frequency ω with non-dimensional flow velocity U for β = 0.295; the flow
velocity where a mode undergoes flutter (Uf ) is marked.

Figure 4.3: Variation of complex frequency ω with non-dimensional flow velocity U for β = 0.5; the flow
velocity where a mode undergoes flutter (Uf ) is marked.
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4.1.1 Variation of critical flow velocity with mass ratio

The variation of the primary critical flow velocity or flutter flow velocity Uf and the corresponding flutter
frequency ωf is plotted against mass ratio β in fig 4.4. (The determination of Uf versus β curve is done
by fixing a Uf and then looping β over 0 to 1.) The Uf and ωf curves is composed of a set of S-shaped
segments. It is also observed that for a particular β, there could be two flutter flow velocities, somewhat
similar to what was observed for the dynamics of the second mode for β = 0.295.

Figure 4.4: Variation of critical non-dimensional flow velocity Uf with mass ratio β
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4.2 Effect of gravitational parameter

The study of the effect of gravity (γ 6= 0) is driven by the need to investigate the system dynamics of
a vertical cantilevered pipe. For a horizontal system, gravitational force produces an initial deformation

which then can be neglected while performing linear analysis. Given that γ = (M+m)gL3

EI
, for metal pipes

conveying fluid, γ is small except when L is very large and so the effect on the dynamics may be neglected,
however, for rubber or elastomer pipes, E is relatively lower and so the gravity effects are non-negligible.
For different values of gravitational parameter γ while neglecting dissipation effects, the variation of flutter
flow velocity Uf with mass ratio β is shown in fig 4.5. It is apparent that as γ increases, the flutter flow
velocity increases for any β. This suggests that higher γ could make a system more stable.

Figure 4.5: Variation of flutter flow velocity with mass ratio for different values of gravitational parameter.

4.3 Effect of dissipation

4.3.1 External dissipation σ

The effect of external dissipation σ

(
= cL2√

EI(m+M)

)
on the dynamics of the system is presented in fig 4.6

with α = γ = 0. High values of σ would be encountered when a pipe (for example rubber or elastomeric
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pipe) is immersed in water or any other more viscous fluid [3].
We observe the following in fig 4.6

� For mass ratio β < 0.3, the flutter flow velocity Uf increases with σ. This implies that for smaller
β, higher σ enhances the system’s stability.

� In the interval 0.3 ≤ β < 0.5, we do not find any significant effect of σ on the system dynamics.

� When β ≥ 0.5, higher σ no longer contributes to the system stability, rather it plays an active role
in destabilizing the system.

Figure 4.6: Variation of flutter flow velocity with mass ratio for different σ.

4.3.2 Internal dissipation α

The variation of flutter flow velocity frequency Uf with mass ratio β for the Kelvin-Voigt dissipation
parameter α = 0.0, 0.001, 0.002, 0.003 with γ = 0.0 and σ = 0 is shown in fig 4.7. Due to the system being
very sensitive to α, analysis for higher α could not be done. The reason behind this is that α is multiplied
by the fourth power of eigenvalue λj as can be seen in eqn 3.14. The eigenvalues range from λ1 = 1.8751
to λ10 = 29.8451 for the first 10 modes and therefore, the corresponding fourth powers are quite high.
Similar to what was observed in the case of external dissipation, fig 4.7 leads us to the following observations
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� In the range 0 < β < 0.28, higher value of α improves the system’s stability.

� For a brief interval 0.28 < β < 0.35 and then β > 0.6, higher value of α deteriorates the system
stability by bringing Uf down.

� No significant effect of α on the system stability is seen for 0.35 < β ≤ 0.6.

Figure 4.7: Variation of Uf with mass ratio β for various α
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4.4 Response to velocity impulse input

Point displacement history Let us subject the cantilevered system to the following velocity impulse
input

η̇ (ξ, τ = 0) = 0.2 δ(ξ − 1)

and zero initial displacement, η(ξ, τ = 0) = 0. The velocity impulse input excites all the frequencies in the
system with equal magnitude. The displacement history for a point located at the tip of the cantilevered
system ξ = 1 is shown for two different U - one prior to the occurrence of flutter and the other post flutter
- for β = 0.2 (see fig 4.1) and γ = σ = α = 0 in figs 4.8 and 4.9 respectively.

Figure 4.8: Displacement history of a point located at the tip for β = 0.2, U = 5.57

Figure 4.9: Displacement history of a point located at the tip for β = 0.2, U = 5.6
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It is apparent that the case corresponding to U prior to the onset of flutter sees its oscillating mean
displacement decaying with time while the one post flutter sees its oscillating mean displacement growing
in time.

Energy dynamics In order to assess the energy dynamics, we construct an expression for the instanta-
neous “kinetic energy” of the system which is given by

T (τ) =
1

2

∫ 1

0

η̇2(ξ, τ) dξ

Upon substituting η(ξ, τ) =
∑N

j=1 qj(τ)φj(ξ) from eqn 3.13 in the above equation and using the orthonor-
mality property of the modal shape functions, we have

T (τ) =
1

2

∫ 1

0

(
N∑
i=1

q̇i(τ)φi(ξ)

)(
N∑
j=1

q̇j(τ)φj(ξ)

)
dξ

=
1

2

N∑
i=1

N∑
j=1

q̇iδij q̇j

=⇒ T (τ) =
1

2
q̇TMq̇ (4.1)

where the mass matrix M is an identity matrix I (eqn 3.14).
For the same set of parameters considered in the point displacement history case, kinetic energy

dynamics of the system is plotted in figs 4.10 and 4.11. As expected, the mean kinetic energy of the
system shows a gradual decline with time for pre-flutter U ; the opposite happens for post-flutter U .

Figure 4.10: Kinetic energy dynamics of the system for β = 0.2, U = 5.57 (pre-flutter)
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Figure 4.11: Kinetic for β = 0.2, U = 5.6 (post-flutter)
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CHAPTER 5

CONCLUSION

We draw the following major conclusions from the linear analysis of cantilevered pipe converying fluid

� Influence of mass ratio β: The variation of complex frequency with flow velocity U for various β
was investigated neglecting gravitational and dissipation effects. For low U , all modes experienced
damping while at least one mode leads to flutter at higher U . The flutter flow velocity Uf saw an
increase with increasing β, in general, except for some intervals for β which saw two possible values
of Uf . This happens because of the system dynamics forming ‘instability-restabilization-instability’
sequence. Flutter occurred via different coupled modes for different β.

� Influence of gravitational parameter γ: Neglecting dissipation effects, it was observed that Uf
increased for the same β as γ was increased, improving the system’s stability.

� Influence of external dissipation σ: With γ and α set to zero, increasing σ improves the stability
of the system for lower β, however at higher β, destabilization of the system takes place. Increase in
σ has negligible effect on the intermediate β.

� Influence of internal dissipation α: Once γ and α are set to zero, increasing Kelvin-Voigt
dissipation factor α improves the stability of the system for lower β. For a brief interval β thereafter
and again at higher β, the system gets destabilized. Increase in α has negligible effect on the
intermediate β.

� Response to velocity impulse input: The cantilevered pipe system was subjected to a velocity
impulse input at the tip for β = 0.2. The displacement history at the tip was recorded for two values
of U , one which was less than the corresponding Uf and another which was greater. The pre-flutter
U showed a decaying mean motion while the other a growing one, which is expected. A similar
behaviour was observed for the kinetic energy dynamics of the cantilevered pipe system.

Additional resources

The code used for the analysis can be downloaded from my GitHub repository [8].
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APPENDIX A

DERIVATION OF CANTILEVER BEAM MODAL FUNCTIONS

Consider the following non-dimensional equation of a cantilever beam

η̈ + η′′′′ = 0 (A.1)

Introduce a solution of the form [4]
η(ξ, τ) = q(τ)φ(ξ)

On substituting the above expression into eqn A.1, we have

q̈φ+ qφ′′ = 0

− q̈
q

=
φ′′′′

φ
= k (constant) (A.2)

For harmonic solution, we must have k = ω2 and so

φ′′′′ = ω2φ

=⇒ φ′′′′ − ω2φ = 0 (A.3)

Takiing λ4 = ω2, we have

φ′′′′ − λ4φ = 0 (A.4)

The eqn A.4 accepts a solution of the form

φ(ξ) = A cosh(λξ) +B cos(λξ) + C sinh(λξ) +D sin(λξ) (A.5)

The boundary conditions for the cantilever beam are

φ(ξ = 0) = φ(ξ = 0) = φ′′(ξ = 1) = φ′′′(ξ = 0) = 0 (A.6)

Applying the first boundary condition (b.c.) given in eqn A.6 to eqn A.5, we have

0 = A+B

B = −A (A.7)

Applying the second b.c. given in eqn A.6,

φ(ξ) = λ(A sinh(λξ)−B sin(λξ) + C cosh(λξ) +D cos(λξ))

=⇒ 0 = λ(C +D)
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=⇒ D = −C (A.8)

Applying the third b.c., φ′′(ξ = 1) = 0, given in eqn A.6, and using eqns A.7 and A.8

φ′′(ξ) = λ2(A cosh(λξ)−B cos(λξ) + C sinh(λξ)−D sin(λξ))

=⇒ 0 = λ2(A cosh(λ)−B cos(λ) + C sinh(λ)−D sin(λ))

=⇒ 0 = A(cosh(λ) + cos(λ)) + C(sinh(λ) + sin(λ))

=⇒ C

A
= − (cosh(λ) + cos(λ)

(sinh(λ) + sin(λ))
(A.9)

Applying the fourth b.c., φ′′′(ξ = 1) = 0, given in eqn A.6, and using eqns A.7 and A.8

φ′′′(ξ) = λ3(A sinh(λξ) +B sin(λξ) + C cosh(λξ)−D cos(λξ))

=⇒ 0 = λ3(A sinh(λ) +B sin(λ) + C cosh(λ)−D cos(λ))

=⇒ 0 = A(sinh(λ)− sin(λ)) + C(cosh(λ) + cos(λ))

=⇒ C

A
= − (sinh(λ)− sin(λ)

(cosh(λ) + cos(λ))
(A.10)

From eqns A.9 and A.10,

(cosh(λ) + cos(λ)

(sinh(λ) + sin(λ))
=

(sinh(λ)− sin(λ)

(cosh(λ) + cos(λ))

=⇒ cosh2(λ) + cos2(λ) + 2 cosh(λ) cos(λ) = sinh2(λ)− sin2(λ)

=⇒ cosh2(λ)− sinh2(λ)︸ ︷︷ ︸
1

+ cos2(λ) + sin2(λ)︸ ︷︷ ︸
1

+2 cosh(λ) cos(λ) = 0

=⇒ 2 + 2 cosh(λ) cos(λ) = 0

=⇒ 1 + cosh(λ) cos(λ) = 0 (A.11)

The transcendental equation A.11 is the characteristic equation of the cantilever beam. The roots of eqn
A.11 gives the modal frequencies ωr = λ2r satisfying

1 + cosh(λr) cos(λr) = 0 r = 1, 2, . . .

Using eqns A.7 and A.8, we have the following expression for the rth modal function A.5

φr(ξ) = A

(
cosh(λrξ)− cos(λrξ)

)
+ C

(
sinh(λrξ)− sin(λrξ)

)
r = 1, 2, . . .

= Ar

[
cosh(λrξ)− cos(λrξ) +

Cr
Ar

(
sinh(λrξ)− sin(λrξ)

)]
r = 1, 2, . . .

We could use any one of eqns A.7 and A.8 to substitute for Cr

Ar
. Picking Cr

Ar
= − (sinh(λr)−sin(λr)

(cosh(λr)+cos(λr))
, we have

the rth modal function

φr(ξ) = Ar

[
cosh(λrξ)− cos(λrξ)−

(sinh(λr)− sin(λr))

(cosh(λr) + cos(λr))

(
sinh(λrξ)− sin(λrξ)

)]
r = 1, 2, . . .

(A.12)

We normalize the above expression so that Ar is no longer arbitrary as∫ 1

0

φ2
r(ξ) dξ = 1 r = 1, 2, . . .

Orthogonality of modal functions The normalized modal functions are orthonormal such that∫ 1

0

φr(ξ)φs(ξ) dξ = δrs r, s = 1, 2, . . .

where the Kronecker delta δrs = 1 if r = s and δrs = 0 if r 6= s
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